Pediatric Sonography Review

A Q&A Review for the ARDMS Specialty Exam

JULIE PLAGUHER | MARIELIS MARRERO MALDONADO
LENNARD D. GREENBAUM | JOHN BLAKE CAMPBELL

1-2-3 STEP
Ultrasound Education & Test Preparation

Step 1 Review text
Step 2 Mock examination
Step 3 Q&A memory skills flashcard drill

SDMS-Approved 12 CME Credits
Pediatric Sonography Review
A Q&A REVIEW FOR THE ARDMS PEDIATRIC SONOGRAPHY EXAM

Julie Plaugher, RDMS (AB)(OB/GYN)(PS)
Arnold Palmer Hospital for Children
Winnie Palmer Hospital for Women & Babies
Orlando, Florida

Marielis Marrero Maldonado, RDMS (AB)(OB/GYN)(PS)
Arnold Palmer Hospital for Children
Winnie Palmer Hospital for Women & Babies
Orlando, Florida

Editors in Chief:

Lennard D. Greenbaum, MD
Winnie Palmer Hospital for Women & Babies
Orlando, Florida

John Blake Campbell, MD
Arnold Palmer Hospital for Children & Women
Orlando, Florida
Catherine Buttermore, RDMS (AB) (OB/GYN)(PS)
Sonographer
Orlando Health
Orlando, Florida

Tara K. Cielma, BS, RDMS, RDCS, RVT, RT(S)
Lead Sonographer, Clinical Education
Department of Diagnostic Imaging and Radiology
Children’s National Health System
Washington, DC

Harris L. Cohen, MD, FACP, FSRU, FAIUM, FAAP
Professor and Chair
Department of Radiology, Pediatrics and OB/GYN
University of Tennessee Health Science Center
Radiologist-in-Chief
Le Bonheur Children’s Hospital
Memphis, Tennessee

Michael DiPietro, MD, FAAP, FAIUM
Former John F. Holt Collegiate Professor of Radiology
Professor Emeritus, Pediatrics and Communicable Diseases
Division of Pediatric Radiology
C. S. Mott Children’s Hospital
Ann Arbor, Michigan

Theresa Donovan, RDMS (AB)(OB/GYN)(PS)
Sonographer
Orlando Health
Orlando, Florida

Joanie Grzeszczak, RDMS (AB)(OB/GYN)(NE)
Arnold Palmer Hospital for Children
Winnie Palmer Hospital for Women & Babies
Orlando, Florida

Charlotte Henningsen, MS, RT(R), RDMS, RVT, FSDMS, FAIUM
Associate VP for Faculty Development in Teaching & Learning
Director and Professor – Center for Advanced Ultrasound Education
AdventHealth University
Orlando, Florida

Jason C. Hooper, BS, RDMS, RVT
Sonography Supervisor
Monroe Carell Jr. Children’s Hospital
Vanderbilt University Medical Center
Nashville, Tennessee

Sara M. O’Hara, MD, FAAP, FAIUM
Chief, Section of Ultrasound
Radiologist, Department of Radiology and Medical Imaging
Cincinnati Children’s Hospital Medical Center
Professor, University of Cincinnati Department of Radiology
Cincinnati, Ohio

Claudia Rumwell, RN, FSVU
Educator and Consultant in Senior Care
Coauthor, Vascular Technology: An Illustrated Review

Susan Raatz Stephenson, MS, MA Ed, RDMS, RVT, CIIP
Global Content Manager
Customer Education General Imaging Ultrasound
Siemens Medical Solutions USA, Inc.
Salt Lake City, Utah

Kerry E. Weinberg, PhD, MA, MPA, RT(R), RDMS, RDCS, FSDMS
Associate Professor
Program Director, Diagnostic Medical Sonography Program
School of Health Professions
Long Island University
Brooklyn, New York
PEDIATRIC SONOGRAPHY is quickly increasing in popularity as a focused discipline within the imaging spectrum. The American Registry for Diagnostic Medical Sonography (ARDMS) created the Pediatric Sonography (PS) registry exam in response to the evolving pediatric field, and testing began in 2015. While studying for the new PS exam, we realized that we had to rely solely on textbooks and saw the need for a Q&A registry review mock examination.

Combined, we have 37 years of experience in sonography, and we hope that by writing this book, we will have left a little legacy behind in the field we love so much. We knew that working at Arnold Palmer Medical Center, an imaging center accredited by the American College of Radiology, we were in the right environment to create a great teaching tool.

Our intention is to provide a review book that will serve as a comprehensive mock test covering all the clinical tasks outlined by the ARDMS for the PS registry exam—plus supporting diagrams, text to explain the answers and subtleties of the items, and clear ultrasound images. Beyond this, we wanted to provide sonographers with a tool both to introduce them to pediatric sonography and to help them expand their current knowledge.

Important note: Although many of our colleagues have remarked on similarities between our questions and those of the actual exam, do not be misled into thinking you should memorize these questions and answers. They are here to give you practice, to teach you things you may not know, and to reveal your strengths and weaknesses so that you know where to put your energy as you prepare for the exam. They also provide a means of assessing your progress as you study.

Writing this book took a great deal of time and commitment. We were fortunate to work with exceptional mentors and would not have been able to realize our project without the help of Dr. Lennard D. Greenbaum and Dr. John B. Campbell. Their time and expertise were critical to our success, and it is an honor to have worked with them on the development of the book.

We are grateful for the pediatric radiologists of Medical Center Radiology Group: Dr. Joseph N. Foss, Dr. Susan Smith, Dr. Michael S. Gurian, Dr. Ruby Lukse, Dr. Allan S. Clayman, and Dr. Kathryn Garrett. Their willingness to help us find images, answer questions along the way, and invest their time and attention in enlightening us on a day-to-day basis is deeply appreciated.

We would also like to thank our manager, Larry C. Simmons, and our supervisor, Olga A. Rasmussen, for their guidance, support, and understanding. We truly appreciate Catherine C. Buttermore, RDMS, and Theresa M. Donovan, RDMS, for dedicating personal time to providing valuable feedback and suggestions as well as notes of encouragement and images for our use. A special expression of gratitude goes out to a host of other colleagues and coworkers for their patience with us during this process and for the quality of the images they helped provide for this book: Brianna Arellano, RDMS, RVT; Jennifer Astor, RDMS; Allison G. Bastian, RDMS; Brittini J. Rivera, RDMS; Edwin Cosme, RDMS; Sandra Dahlstrom, RDMS; Jennifer Deckman, RDMS;
Lexi Furukawa, RDMS, RVT; Stacey L. Garcia, RDMS; Gabrielle Green, RDMS; Joanie Grzeszczak, RDMS; Marie C. Irving, RDMS; Natasha L. Johnson, RDMS; Esta Manso, RDMS; Mindee Mulharan, RDMS; Kiarisel M. Newell Diaz, RDMS, RVT; Cristina Pozdoll, RDMS; Samantha N. Smith, RDMS; Janet Chernow Wenger, RDMS; and Lauren C. Wood, RDMS.

Many thanks to Zara Jump, who not only provided detailed and original illustrations for us but also managed to do so while preparing for her first year of college. We are grateful for the opportunity Davies Publishing gave us to publish this book and appreciate the personal assistance from Michael Davies, Christina Moose, and Charlene Locke during the process.

We want to thank our families for their unwavering support, care, and patience during our year of writing and research. You cheered us on and helped us stay focused. Thank you for understanding our passion for this project and providing the momentum to bring it to a reality.

Finally, you—the budding or cross-training pediatric sonographer—have not only our best wishes for success but also our admiration for taking this big and important step in your career!

Julie Plaugher

Julie Plaugher, RDMS

Marielis Marrero Maldonado

Marielis Marrero Maldonado, RDMS
Publisher’s Note

This mock exam is a question/answer/reference review of Pediatric Sonography for those candidates who plan to take the specialty examination for the Registered Diagnostic Medical Sonographer (RDMS) credential, administered by the American Registry for Diagnostic Medical Sonography (ARDMS). It is designed as an adjunct to your regular study and as a means of helping you determine your strengths and weaknesses so that you can study more effectively. This mock exam is also considered a CME activity; an SDMS-approved CME quiz worth 12 credits will be found in Part 20 of this book.

Facts about Pediatric Sonography Review

- This mock exam covers the material on the ARDMS exam content outline in effect as of 2019. Readers are advised to check the ARDMS website, www.ardms.org, for the latest updates. The mock exam itself is continuously updated and revised as necessary, and readers can check Davies’ website for the latest Study Alerts and other product updates at http://www.daviespublishing.com/Product-Updates-C220.aspx.

- The mock exam focuses exclusively on the PS specialty exam to ensure thorough coverage of even the smallest subtopic on the exam. (For those preparing for the Sonography Principles and Instrumentation exam, see Davies’ Ultrasound Physics Review: SPI Edition, available in both print and interactive formats at www.daviespublishing.com.)

- In preparing this mock exam, the authors have referred to the current ARDMS content outline as a guideline for coverage. At the same time, they have organized the content using a comprehensive, subject-driven approach to ensure that all important topics are fully addressed. The ARDMS exam content outline provides a generalized categorical overview together with very specific clinical tasks, but it can omit and assume the mastery of key intermediate topics you must know to pass the examination. Hence this hybrid approach gives you the best of both worlds.

- This mock exam contains 623 questions, many of which are accompanied by sonographic and other images, anatomic illustrations, and schematics—more than 250 in all.

- The answer key located in Part 19 contains not only the answers but also concise explanations that are abundant, clear, and authoritatively referenced for further study. We recommend that you have a standard pediatric ultrasound review text at your side when using this mock exam to study for the PS exam; you will see several of these referenced in the answer section and the “Suggested Readings” in Part 21.

- This mock examination has been approved by the Society of Diagnostic Medical Sonography (SDMS) as a CME activity. A CME application form, quiz, and full submission instructions are included in Part 20. Passing this quiz will qualify the applicant for 12 CME credits. A modest administrative processing fee applies at the time of submission, and more than one sonographer may use the forms to complete this activity for CME credit. These credits are accepted by ARDMS, its companion council the Alliance for Physician Certification and Advancement (APCA), the American Registry of Radiologic Technologists (ARRT), and other
organizations toward meeting their CME requirements. Some credentials carry stipulations regarding specialty areas in which CME credits may be earned. Always check with the organization that governs your credential(s). All the credits in this activity may be applied to maintain the ARDMS PS credential.

- The expanded ARDMS exam content outline appears in Part 22. Under each task we have indexed mock exam questions related to that task, for your convenience in targeting your study on specific exam topics.

ARDMS Advanced Item Type (AIT) Questions

All the ARDMS exams now include Advanced Item Type (AIT) questions that assess practical sonography instrumentation skills. For the PS specialty exam, these AIT questions include what ARDMS calls “Hotspot” questions. Hotspot items display an image with the question and ask you to indicate the correct answer by marking directly on the image using your cursor. (To learn how to use the interface during the exam you can visit a handy YouTube video posted by ARDMS.) This type of question is called “advanced” because it involves a higher level of thinking and processing than you perform when answering a conventional multiple-choice question. In Davies’ mock exam, similar questions are identified as “AIT—Hotspot” questions. These items ask you to identify what an arrow in the image is pointing at or to indicate the label on an image that corresponds to the correct answer.

Another type of AIT question, the Semi-Interactive Console (SIC) item, requires the examinee to use a semi-interactive console to correct a problem with the image presented. Currently these items do not appear on the PS exam, but as a bonus feature we have identified similar items as “AIT—SIC” questions.

Finally, PACSim items—case-based Picture Archive and Communication Simulation questions—are not included in this PS mock exam because currently this type of question is limited to the Ob/Gyn exam and the Physician in Vascular Interpretation (PVI) exam.

How to Use This Mock Exam

Pediatric Sonography Review effectively simulates the content of the PS exam. Current ARDMS standards call for 170 multiple-choice questions to be answered during a three-hour period. That is, you will have an average time of approximately one minute to answer each question. Timing your practice sessions according to the number of questions you need to finish will help you prepare for the pressure experienced by PS candidates taking this exam. It also helps to ensure that your practice scores accurately reflect your strengths and weaknesses so that you can study more efficiently in the limited time you are able to devote to preparation.

ARDMS test results are reported as a “scaled” score that ranges from a minimum of 300 to a maximum of 700. A scaled score of 555 is the passing score—the “passpoint” or “cutoff score” for all ARDMS examinations. Also known as the Angoff method, scaled scoring takes the difficulty of each question into account, which helps ensure the fairness of the exam.

We include below and strongly recommend that you read *Taking and Passing Your Exam*, by Don Ridgway, RVT, who offers practical tips for passing the ARDMS examinations.
Contents

Reviewers v
Authors’ Preface vii
Publisher’s Note ix
Taking and Passing Your Exam xi
Color Plates xxiii

PART 1 Head 1

Embryology and development

Normal anatomy
Newborn skull
Brain lobes
Ventricular system
Posterior fossa
Choroid plexus
Cavum septi pellucidi
Corpus callosum
Basal ganglia
Circle of Willis
Tentorium cerebelli
Massa intermedia
Cerebral peduncles
Middle cerebral artery
Ependyma
White matter
Gray matter

Associated lab values and hormones

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
Congenital
Chiari malformation
Dandy-Walker complex
Holoprosencephaly
Schizencephaly
Lissencephaly
Hydranencephaly
Agenesis of the corpus callosum
Absent septum pellucidum
Colpocephaly
Septo-optic dysplasia

Obstruction abnormalities
Congenital aqueductal stenosis
Hydrocephalus

Cystic abnormalities
Arachnoid cyst
Choroid plexus cyst
Connatal cyst
Subependymal cyst
Porencephaly
Cystic encephalomalacia

Solid masses
Benign
- Cerebellar astrocytoma
- Choroid plexus papilloma
Malignant
- Ependymoma
- Glioma

Infection and inflammation
TORCH infections
Meningitis

Vascular abnormalities
Intracranial hemorrhage
Extracranial hemorrhage
Vein of Galen malformation
Lenticulostriatal vasculopathy

Injury and trauma
Hypoxic-ischemic event
Periventricular leukomalacia
Caput succedaneum
Hematoma
- Cephalohematoma
- Subgaleal hematoma
- Epidural hematoma
- Subdural hematoma

Diseases and syndromes

Miscellaneous

Procedures
Extracorporeal membrane oxygenation (ECMO)
PART 2 Spine 27

Embryology and development

Normal anatomy
 Spinal cord
 Conus medullaris
 Filum terminale
 Cauda equina
 Ventriculus terminalis

Associated lab values and hormones
 Alpha-fetoprotein

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Filar cyst
 Spinal dysraphism
 Non–skin-covered
 Skin-covered
 Occulta
 Tethered cord
 Caudal regression syndrome
 Diastematomyelia
 Sacrococcygeal teratoma

Obstruction abnormalities

Cystic abnormalities
 Syringomyelia
 Hydromyelia
 Syringohydromyelia

Solid masses
 Benign
 Lipoma
 Malignant
 Sacrococcygeal teratoma

Infection and inflammation

Vascular abnormalities

Injury and trauma
 Cord compression
 Cord displacement

Diseases and syndromes

Miscellaneous
 Pseudomass
 Pilonidal sinus

Procedures
 Lumbar puncture
PART 3 Neck and Face 37

Embryology and development

Normal anatomy
 Salivary glands
 Parotid
 Submandibular
 Sublingual
 Thyroid gland
 Parathyroid glands

Associated lab values and hormones
 Thyroid-stimulating hormone (TSH)
 Parathyroid hormone (PTH)

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Branchial cleft anomaly
 Lymphangiomas
 Fibromatosis colli
 Obstruction abnormalities
 Cystic abnormalities
 Ranula
 Duplication cyst
 Thyroglossal duct cyst
 Solid masses
 Benign
 Colloid follicles
 Thyroid nodules
 Thyroid adenoma
 Parathyroid adenoma
 Malignant
 Papillary thyroid carcinoma
 Follicular carcinoma
 Infection and inflammation
 Parotitis
 Lymphadenopathy
 Vascular abnormalities
 Hemangioma
 Injury and trauma
 Diseases and syndromes
 Hashimoto’s thyroiditis
 Graves’ disease
 Primary hyperparathyroidism
 Secondary hyperparathyroidism
Miscellaneous
 Sialolithiasis
 Goiter

Procedures
 Biopsies
 Percutaneous drainage

PART 4 Chest 49

Embryology and development

Normal anatomy
 Thymus
 Diaphragm
 Pleura

Associated lab values and hormones

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Congenital pulmonary airway malformation (CPAM)
 Bronchopulmonary sequestration
 Bochdalek hernia
 Morgagni hernia
 Obstruction abnormalities
 Cystic abnormalities

Solid masses
 Benign
 Thymoma
 Malignant
 Lymphoma

Infection and inflammation
 Lung consolidation

Vascular abnormalities

Injury and trauma
 Diaphragmatic paralysis

Miscellaneous
 Pleural effusion
 Atelectasis
 Gastroesophageal reflux

Procedures
 Thoracentesis
Embyology and development

Normal anatomy

Segments
Lobes
Bile ducts
Hepatic veins
Portal veins
Hepatic artery

Associated lab values and hormones

Alanine transaminase (ALT)
Aspartate transaminase (AST)
Alkaline phosphatase (ALP)
Albumin
Bilirubin

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology

Congenital
Hepatic fibrosis
Obstructive abnormalities
Cystic abnormalities
Liver cysts
Polycystic liver
Solid masses
Benign
Hemangiomas
Hemangioendothelioma
Adenomas
Mesenchymal hamartomas
Focal nodular hyperplasia
Malignant
Hepatoblastoma
Hepatocellular carcinoma
Undifferentiated embryonal sarcoma
Metastases
Infection and inflammation
Liver abscesses
Granuloma
Vascular abnormalities
Budd-Chiari
Portal vein hypertension
Portosystemic collaterals
Portal vein thrombosis
Cavernous transformation of the portal vein
Veno-occlusive disease
Arteriovenous malformations

Injury and trauma
Hematomas

Diseases and syndromes
Hepatitis
Cirrhosis

Miscellaneous
Steatosis
Hepatomegaly
Portal venous gas

Procedures
Liver transplant
Biopsies
Percutaneous drainage
Elastography

PART 6 Gallbladder and Biliary Ducts 71

Embryology and development

Normal anatomy
Segments
Bile ducts

Associated lab values and hormones
Direct bilirubin
Indirect bilirubin
Alkaline phosphatase (ALP)

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
Congenital
Biliary atresia
Obstructive abnormalities
Choledocholithiasis
Jaundice
Cystic abnormalities
Choledochal cyst
Solid masses
Benign
Polyps
Malignant
Rhabdomyosarcoma
Infection and inflammation
 Cholecystitis
 Cholangitis
Vascular abnormalities
Injury and trauma
Diseases and syndromes
 Caroli disease
 Alagille syndrome
Miscellaneous
 Gallbladder hydrops
 Air in the gallbladder
 Cholelithiasis
 Biliary sludge

Procedures
 Endoscopic retrograde cholangiopancreatography (ERCP)
 Kasai procedure

PART 7 Pancreas 85

Embryology and development
Normal anatomy
 Segments
 Ducts
 Vascular landmarks

Associated lab values and hormones
 Exocrine
 Endocrine

Ultrasound prep and protocol
Normal ultrasound appearance
Pathology
 Congenital
 Congenital cysts
 Annular pancreas
 Pancreatic divisum
 Ectopic pancreas
 Congenital hyperinsulinism/nesidioblastosis
Obstruction abnormalities
Cystic abnormalities
 Pseudocyst
Solid masses
 Benign
 Insulinoma
 Lymphangioma
Malignant
 Adenocarcinoma
 Pancreatoblastoma
Infection and inflammation
 Pancreatitis
Vascular abnormalities
Injury and trauma
Diseases and syndromes
 Cystic fibrosis
 Schwachman-Diamond syndrome
Miscellaneous
Procedures
 Endoscopic retrograde cholangiopancreatography (ERCP)
 Percutaneous drainage

PART 8 Spleen 95

Embryology and development
Normal anatomy
Associated lab values and hormones
Ultrasound prep and protocol
Normal ultrasound appearance
Pathology
 Congenital
 Polysplenia
 Asplenia
 Accessory spleen
 Wandering spleen
 Obstruction abnormalities
 Splenic vein thrombosis
 Cystic abnormalities
 Splenic cysts
 Solid masses
 Benign
 Lymphangioma
 Hemangioma
 Malignant
 Lymphoma
Infection and inflammation
 Abscesses
Vascular abnormalities
 Infarct
 Sequestration
Injury and trauma
 Hematomas
 Rupture/splenosis
Diseases and syndromes
 Sickle cell disease
Miscellaneous
 Calcifications
 Splenomegaly

Procedures
 Biopsies
 Percutaneous drainage

PART 9 Urinary Tract 101

Embryology and development

Normal anatomy
 Kidneys
 Ureters
 Bladder
 Vasculature

Associated lab values and hormones
 Blood urea nitrogen (BUN)
 Creatinine (CR)
 BUN/CR ratio

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Lobulated kidney
 Hypertrophied column of Bertin
 Junctional parenchymal defect of the kidney
 Dromedary hump
 Renal hypoplasia
 Renal agenesis
 Renal ectopia
 Horseshoe kidney
 Crossed-fused renal ectopia
 Duplex kidney
 Medullary sponge kidney
 Multicystic dysplastic kidney
 Polycystic kidney disease
 Ectopic ureter
 Vesicoureteral reflux
 Bladder extrophy
Posterior urethral valves
Urachal abnormalities
Cloacal anomalies

Obstruction abnormalities
Hydronephrosis
Megaureter
Ureteropelvic junction obstruction
Megacystis

Cystic abnormalities
Renal cyst
Ureterocele

Solid masses
Benign
Angiomyolipoma
Mesoblastic nephroma
Cystic nephroma
Bladder diverticula
Malignant
Wilms tumor
Renal cell carcinoma
Lymphoma
Nephroblastomatosis
Rhabdoid tumors

Infection and inflammation
Pyelonephritis
Pyonephritis
Pyonephrosis
Xanthogranulomatous pyelonephritis
Fungal infections
Glomerulonephritis

Vascular abnormalities
Renal vein thrombosis
Renal artery stenosis
Renal artery pseudoaneurysm
Acute tubular necrosis

Injury and trauma
Urinoma
Fractured kidney
Shattered kidney

Diseases and syndromes
Eagle-Barrett syndrome
Tuberous sclerosis
Von Hippel–Lindau syndrome
Acute renal failure
Chronic renal failure
Miscellaneous
 Nephrocalcinosis
 Urolithiasis
 Neurogenic bladder

Procedures
 Biopsies
 Percutaneous drainage
 Renal transplant

PART 10 Adrenal Glands 127

Embryology and development

Normal anatomy

Associated lab values and hormones
 Cortisol
 Aldosterone
 Catecholamines

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Congenital adrenal hyperplasia
 Obstruction abnormalities
 Cystic abnormalities
 Solid masses
 Benign
 Pheochromocytoma
 Malignant
 Neuroblastoma
 Adrenocortical tumors
 Ganglioneuroblastoma
 Infection and inflammation
 Vascular abnormalities
 Injury and inflammation
 Adrenal hemorrhage
 Abscess
 Diseases and syndromes
 Wolman disease
 Cushing disease
 Miscellaneous

Procedures
 Biopsies
 Percutaneous drainage
PART 11 GI Tract and Mesentery

Embyology and development

Normal anatomy
 Esophagus
 Stomach
 Small intestine
 Large intestine
 Appendix
 Omentum
 Mesentery

Associated lab values and hormones

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Hypertrophic pyloric stenosis
 Duodenal atresia
 Midgut malrotation
 Imperforate anus
 Obstruction abnormalities
 Volvulus
 Bezoars
 Intussusception
 Small bowel
 Large bowel
 Cystic abnormalities
 Duplication cysts
 Solid masses
 Benign
 Polyps
 Malignant
 Lymphoma
 Infection and inflammation
 Appendicitis
 Necrotizing enterocolitis
 Vascular abnormalities
 Median arcuate ligament syndrome (MALS)

Injury and trauma

Diseases and syndromes
 Crohn disease
 Hirschsprung disease

Miscellaneous
 Meckel’s diverticulum
 Pylorospasm

Procedures
 Air reduction enema
PART 12 Pediatric Hip 145

Embryology and development
Normal anatomy
Associated lab values and hormones
Ultrasound prep and protocol
Normal ultrasound appearance
Pathology
 Congenital
 Developmental dysplasia of the hip
 Obstruction abnormalities
 Cystic abnormalities
Solid masses
 Benign
 Malignant
Infection and inflammation
 Transient synovitis
 Osteomyelitis
 Hip effusion
Vascular abnormalities
 Avascular necrosis
Injury and trauma
Diseases and syndromes
 Proximal femoral focal deficiency (PFFD)
Miscellaneous
Procedures
 Percutaneous drainage

PART 13 Female Pelvis 155

Embryology and development
Normal anatomy
 Uterus
 Ovaries
 Fallopian tubes
Associated lab values and hormones
 Estrogen
 Progesterone
 Follicle-stimulating hormone (FSH)
 Luteinizing hormone (LH)
 Alpha-fetoprotein (AFP)
Ultrasound prep and protocol
Normal ultrasound appearance
Pathology

Congenital
- Mullerian anomalies

Obstruction abnormalities
- Hydrocolpos
- Hematocolpos
- Hydrometrocolpos
- Hematometrocolpos

Cystic abnormalities
- Gartner’s duct cyst
- Peritoneal inclusion cyst
- Ovarian cysts
 - Follicular cyst
 - Corpus luteal cyst
 - Hemorrhagic cyst
 - Paraovarian cyst

Solid masses
- Benign
 - Dermoid/teratoma
 - Cystadenoma
- Malignant
 - Rhabdomyosarcoma
 - Dysgerminoma
 - Malignant dermoid/teratoma
 - Endodermal sinus tumor
 - Granulosa cell tumor
 - Sertoli-Leydig tumor

Infection and inflammation
- Pelvic inflammatory disease (PID)
- Hydrosalpinx
- Pyosalpinx
- Tubo-ovarian abscess
- Tubo-ovarian complex

Vascular abnormalities
- Torsion

Injury and trauma

Diseases and syndromes
- Polycystic ovary syndrome (PCOS)
- Gonadal dysgenesis
- Intersex disorders

Miscellaneous
- Precocious puberty
- Amenorrhea

Procedures
- Biopsies
- Percutaneous drainage
PART 14 Male Pelvis, Scrotum, and Testes 167

Embryology and development

Normal anatomy
 Scrotum
 Testes

Associated lab values and hormones
 Testosterone

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology
 Congenital
 Cryptorchidism
 Anorchidism
 Monorchidism
 Appendix testis
 Hypospadias
 True hermaphroditism
 Obstruction abnormalities
 Cystic abnormalities
 Epididymal cyst
 Seminoma
 Solid masse
 Benign
 Leydig cell tumor
 Sertoli cell tumor
 Benign teratoma
 Malignant
 Gonadoblastoma
 Infection and inflammation
 Orchitis
 Epididymitis
 Vascular abnormalities
 Testicular torsion
 Torsion of the appendix testis
 Varicocele
 Injury and trauma
 Testicular rupture
 Miscellaneous
 Hydrocele
 Microlithiasis

Procedures
 Biopsies
 Percutaneous drainage
PART 15 Soft Tissue 181

Normal ultrasound appearance
 Dermis
 Subcutaneous tissue
 Fascia
 Muscle
 Joints

Use of the standoff pad
Imaging the contralateral side

Pathology
 Congenital
 Hernia
 Cystic abnormalities
 Popliteal cyst
 Ganglion cyst
 Pilonidal cyst
 Solid mass
 Lipoma
 Infection and injury
 Cellulitis
 Abscess
 Lymphadenopathy
 Hematoma
 Sports injury
 Vascular abnormalities
 Hemangiomas
 Miscellaneous
 Foreign bodies

PART 16 Vasculature of the Extremities 189

Normal anatomy
 Upper extremity
 Lower extremity
 Superficial venous system
 Deep venous system

Pathology
 Deep venous thrombosis (DVT)
 Arteriovenous malformation (AVM)
 Arteriovenous fistula
PART 17 Physics and Instrumentation 193
- Transducer selection
- Image optimization
- Harmonics
- M-mode imaging
- 3D/4D imaging
- Doppler imaging
 - Color Doppler
 - Power Doppler
 - Spectral Doppler
- Artifacts
 - Gray-scale artifacts
 - Color Doppler artifacts
 - Spectral Doppler artifacts

PART 18 Patient Care and Management 199
- Patient communication
- Physician communication
- Reporting and archiving
- Sterile procedure
- Infection control

PART 19 Answers, Explanations, and References 203

PART 20 Application for CME Credit 569

PART 21 Suggested Readings 605

PART 22 ARDMS Exam Content Outline: Tasks Cross-Referenced to Mock Exam Questions 607
201. Arteries traveling toward the liver in a preprandial patient should display:
 A. Hepatofugal high-resistance flow
 B. Hepatofugal low-resistance flow
 C. Hepatopetal high-resistance flow
 D. Hepatopetal low-resistance flow

202. What is the most likely diagnosis for this mass (arrows) in a 1-year-old with symptoms of abdominal mass, jaundice, and anorexia?

![Image of liver with arrows indicating mass]

 A. Focal nodular hyperplasia (FNH)
 B. Hepatoblastoma
 C. Cirrhosis
 D. Undifferentiated embryonal sarcoma

AIT—Hotspot

203. What noninvasive procedure measures liver stiffness?
 A. Elastography
 B. Contrast-enhanced ultrasound
 C. Abdominal vascular study
 D. Liver function tests
204. Which structure is marked with the number 2?

A. Gallbladder
B. Common bile duct
C. Inferior vena cava
D. Portal vein

AIT—Hotspot

205. This incidental finding (arrow) in a 14-year-old male during an abdominal ultrasound is most likely:

A. Hemangioendothelioma
B. Hemangioma
C. Hepatoblastoma
D. Mesenchymal hamartoma

AIT—Hotspot
206. Which technical issue would NOT be a cause of an absent Doppler signal?
 A. High wall filter
 B. High pulse repetition frequency (PRF)
 C. Low Doppler gain
 D. 30-degree vessel-beam angle

AIT—SIC

207. Which hepatic neoplasm is associated with preexisting metabolic liver disease?
 A. Adenoma
 B. Hamartoma
 C. Hemangioma
 D. Lymphoma

208. Which vessel is indicated by the number 2?

A. Main portal vein
B. Left portal vein
C. Right portal vein
D. Posterior branch of the right portal vein

AIT—Hotspot

Questions marked AIT—SIC are similar to ARDMS Advanced Item Type (AIT) questions called "Semi-Interactive Console" items. These require you to use your cursor to adjust controls on an onscreen console to correct a problem with the image presented. The console is "semi-interactive" because only some of the controls can be "adjusted." AIT—SIC items are currently limited to the Sonography Principles and Instrumentation (SPI) examination and as of this printing do not appear on the Pediatric Sonography exam, but as a bonus feature we have identified similar items in this mock exam.
209. Which type of liver abnormality will appear thick-walled and contain air?
 A. Hemangioma
 B. Lymphoma
 C. Hepatic cyst
 D. Pyogenic abscess

210. Which of the following is NOT a cause of hepatomegaly?
 A. Inflammation
 B. Portal vein thrombosis
 C. Vascular congestion
 D. Biliary obstruction

211. Name the condition caused by obstruction of small sublobular hepatic veins that is not normally visualized with ultrasound:
 A. Portal hypertension
 B. Arteriovenous malformation
 C. Budd-Chiari syndrome
 D. Veno-occlusive disease

212. The hypoechoic, focal liver masses in this infant’s liver are most likely:
 A. Hemangioendotheliomas
 B. Hemangiomas
 C. Hepatoblastomas
 D. Polycystic liver
PART 6

Gallbladder and Biliary Ducts

Embryology and development

Normal anatomy

Associated lab values and hormones

Ultrasound prep and protocol

Normal ultrasound appearance

Pathology

Procedures

Note: The main topics of Part 6 are listed. For a complete study outline by topics and subtopics, see pages xxi–xxii of the table of contents. The clinical tasks on the ARDMS exam outline are cross-referenced to the entire text of this mock exam starting on page 607.
213. Which enzyme, when elevated, may indicate gallbladder or liver problems?
 A. Amylase
 B. Alkaline phosphatase (ALP)
 C. Albumin
 D. Aldosterone

214. What is the name of the hyperechoic linear structure located between the gallbladder and the right portal vein?
 A. Ligamentum teres
 B. Ligamentum venosum
 C. Interlobar fissure
 D. Cystic duct

215. What is the term for the folding of the gallbladder fundus, seen here?
 A. Junctional fold
 B. Septate gallbladder
 C. Gallbladder fissure
 D. Phrygian cap

216. What is the most common indication for pediatric gallbladder and biliary tree imaging?
 A. Jaundice
 B. Abdominal pain
 C. Nausea and vomiting
 D. Family history of gallstones
217. Which hepatic vein courses in the same plane as the gallbladder fossa?
 A. Right hepatic vein
 B. Middle hepatic vein
 C. Left hepatic vein
 D. Left portal vein

218. An infant is scanned for persistent jaundice. A fluid-filled structure (arrow) is seen within the porta hepatis and continuous with the common bile duct. What is the most likely diagnosis?

 A. Choledocholithiasis
 B. Fluid filled duodenum
 C. Choledochal cyst
 D. Hydropic gallbladder

See Color Plate 2 on page xxxiii.

 A. Choledocholithiasis
 B. Fluid filled duodenum
 C. Choledochal cyst
 D. Hydropic gallbladder

AIT—Hotspot

219. What is the primary cause of acalculous cholecystitis?
 A. Cholestasis
 B. Trauma
 C. Gallstones
 D. Cholangitis

220. Which patient positions are most commonly used for imaging the gallbladder?
 A. Supine and right lateral decubitus
 B. Supine and left lateral decubitus
 C. Supine and prone
 D. Supine and right posterior oblique
PART 19

Answers, Explanations, and References

Head
Spine
Neck and face
Chest
Liver
Gallbladder and biliary ducts
Pancreas
Spleen
Urinary tract
Adrenal glands
GI tract and mesentery
Pediatric hip
Female pelvis
Male pelvis, scrotum, and testes
Soft tissue
Vasculature of the extremities
Physics and instrumentation
Patient care and management
201. D. Hepatopetal low-resistance flow.

Arteries traveling toward the liver in a preprandial state, such as the proper hepatic artery, should display continuous hepatopetal flow with a low resistance. After a meal (postprandially), vasoconstriction can occur, leading to high-resistance flow. The decrease of diastolic blood flow will cause an increase in the resistive index of the hepatic artery. Note should be made of the patient’s NPO status so as to not mistake the elevated RI with liver disease. Hepatopetal flow would be coursing toward the liver. Hepatofugal flow indicates blood flow away from the liver.

202. B. Hepatoblastoma.

Hepatoblastoma is the most common malignant liver tumor of childhood. Less than 10% of cases are seen over the age of 5, and most occur in the first 2 years of life. Clinically hepatoblastomas are often asymptomatic, but symptoms can include abdominal mass, pain, anorexia, weight loss, and jaundice. Levels of alpha-fetoprotein (AFP) are elevated in 90% of patients. Signs of precocious puberty may be present with the release of chorionic gonadotropins. Hepatoblastoma is associated with Beckwith-Wiedemann syndrome. On ultrasound, a hepatoblastoma will appear as a large, well-defined focal mass in the right lobe of the liver (arrows). The tumor can be echogenic or heterogeneous and contain calcium or necrotic areas. Vascular invasion is most often seen into the portal system. Treatment is chemotherapy and partial hepatectomy. Focal nodular hyperplasia (FNH,
usually seen in adult females) and undifferentiated embryonal sarcoma (in children over the age of 5) are rare occurrences in young children. Cirrhosis can occur in children with existing hepatobiliary disease; however, it is a diffuse parenchymal disease of the liver and not a focal neoplasm.

203. A. Elastography.

Elastography is a noninvasive test performed with ultrasound to measure liver stiffness. On newer software systems, the vibrations of elastic shear waves can be measured and averaged. The velocity of the shear waves relates to the stiffness of the liver. An increase in shear wave velocity is equal to an increase in liver stiffness or fibrosis. An abdominal vascular study is an ultrasound Doppler test that evaluates the flow direction, velocity, and resistive index of abdominal vessels to evaluate for liver function, portal hypertension, and obstruction. Liver function tests consist of a panel of enzymes obtained from bloodwork; in the presence of liver disease these enzymes will be elevated. Contrast-enhanced ultrasound (CEUS) is used primarily to improve liver mass detection or to differentiate focal liver lesions.

204. D. Portal vein.
The portal triad consists of the common bile duct, hepatic artery, and portal vein and is located within the porta hepatis, which is a deep fissure or hilum of the liver. In a longitudinal scan plane (as seen in this image), the portal vein (2) is seen anterior to the inferior vena cava (1). The portal vein is then demonstrated in the transverse plane.

205. B. Hemangioma.

Hemangiomas account for almost 40% of liver masses. This mass is typically solitary and hypovascular with slow blood flow. On ultrasound, hemangiomas (arrow) are moderately echogenic or hyperechoic and homogeneous, with well-defined borders. Smaller hemangiomas tend to be more echogenic and larger hemangiomas can appear more complex. Larger hemangiomas that demonstrate blood-filled vascular spaces are referred to as cavernous hemangiomas. Hemangiomas are an uncommon cause of abdominal masses in neonates and infants and more likely to be seen in children and adolescents. The older age of the patient in this example rules out hemangioendothelioma, hepatoblastoma (not benign), and mesenchymal hamartoma—which all occur under the age of 5.

206. D. 30-degree vessel-beam angle.

To accurately calculate velocity and flow within a vessel, there should be as small a vessel-beam angle as possible, ideally 60 degrees or less. At a perpendicular angle of 90 degrees, no flow can be detected toward or away from the transducer, so there will not be a detectable Doppler shift. Pediatric vessels generally have lower flow within them than do adult vessels. Setting the pulse repetition frequency (PRF) and the wall filter as low as possible (less than 5 MHz) will best demonstrate presence or absence of flow. Having the Doppler gain down too low will also hinder signal identification.

207. A. Adenoma.

Pediatric hepatic adenomas are rare unless they accompany metabolic liver disease. Hepatic adenomas in children are associated with glycogen storage disease type 1, oral contraceptive use, and anabolic steroid therapy for Fanconi’s anemia. Hepatic adenomas have such a varying appearance and are so nonspecific that imaging modalities such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) have a difficult time discriminating between adenomas and other hepatic malignancies. Hamartomas, hemangiomas, and lymphomas do not have any association with preexisting metabolic liver disease.
208. C. Right portal vein.

A The main portal vein enters the liver and divides into the left portal vein (1) and the right portal vein (2). This division takes place within the porta hepatis. The left portal vein then branches into an anterior and a more cephalad branch. The right portal vein branches into an anterior (3) and a posterior (4) branch. Portal venous blood flow is continuous, monophasic, and hepatopetal (toward the liver/transducer).

B Color Doppler imaging demonstrates the hepatopetal flow of the main portal vein. In a normal liver, the only vessel not showing antegrade flow on color Doppler should be the posterior branch of the right portal vein because it travels away from the transducer. The walls of the portal vein are thicker and more echogenic than those of the inferior vena cava.

See Color Plate 19 on page xl.

Pyogenic abscesses usually occur in immunocompromised children or cases of septic spread from other organs. On ultrasound, pyogenic abscesses appear round with thickened, irregular walls and can contain small air bubbles that cause artifacts such as reverberation (ring-down) artifacts. Their complex internal appearance can vary and include debris, fluid levels, and septations. Most are located in the posterior right lobe of the liver. The most common cause in neonates is the bacterium Escherichia coli (E. coli). In infants and children, Staphylococcus aureus (S. aureus) is the main cause. Hemangioma, lymphoma, and hepatic cysts do not have thick walls or contain air.

Portal vein thrombosis is the restriction of blood flow into the liver. The slow flow into the liver causes blood stasis or accumulation and blocks the flow. Collaterals may form in the hepatic, splenic, or renal hilum to help get blood into the liver. This backup in blood flow can cause splenomegaly, not hepatomegaly. Hepatomegaly is the enlargement of the liver. Inflammation, infection, storage diseases, tumors, congestion of blood in the liver (Budd-Chiari), and biliary obstruction are all possible causes.

211. D. Veno-occlusive disease.

Veno-occlusive disease is the term used for the obstruction of small sublobular hepatic veins and is not usually diagnosed by ultrasound. This obstruction is associated with chemotherapy, radiation, toxins, and bone marrow transplant. Ultrasound signs preceding veno-occlusive disease include slow or reversed
portal venous and hepatic artery blood flow, monophasic waveforms of the hepatic veins, and/or an elevated resistive index of the hepatic artery. Filling defects or thrombus may be present in the hepatic veins. The caudate lobe can become enlarged. Ascites, gallbladder wall thickening, and hepatomegaly may also be present. Portal hypertension, arteriovenous malformation (AVM), and Budd-Chiari syndrome can all be demonstrated by ultrasound.

212. A. Hemangioendotheliomas.

Hemangioendothelioma is the most common childhood benign liver tumor. Only 15% of cases occur after 6 months of age, making it predominantly an infantile condition. This mass is typically found on a screening ultrasound for asymptomatic hepatomegaly. Hemangioendotheliomas can be single or multiple. Single masses tend to be larger and complex with well-defined, round or lobular borders. When multiple smaller masses are present—as seen in this image—they are round, homogeneous, and hypoechoic. Hemangioendotheliomas will typically regress and involute, therefore requiring only medical management.
PART 6

Gallbladder and Biliary Ducts

213. B. Alkaline phosphatase (ALP).

Alkaline phosphatase (ALP) is an enzyme found within the liver, bile ducts, and bone. An increase in ALP may indicate liver or gallbladder inflammation or disease. Amylase is an enzyme that assists in turning starch into sugar and is associated with the pancreas. Albumin is a protein made in the liver that is decreased in the presence of liver disease. Aldosterone is a hormone produced by the adrenal gland that helps conserve sodium and stabilize blood pressure.

214. C. Interlobar fissure.

The interlobar fissure is located anterior to the right portal vein and courses medially toward the neck of the gallbladder. It appears linear and hyperechoic. This fissure is a landmark for locating the gallbladder. The ligamentum teres and ligamentum venosum are associated with the left branch of the portal vein. The cystic duct drains the gallbladder and joins the common hepatic duct to form the common bile duct. The cystic duct would not appear hyperechoic.

The folding of the gallbladder fundus is a normal anatomic variant known as the Phrygian cap. Junctional folds are present at the junction of the body and neck of the gallbladder. Gallbladder folds can produce a shadowing artifact that may cause concern for a gallstone. To rule out a stone, it is important to scan the patient in multiple positions and from different angles. A septate gallbladder is a congenital anomaly that causes a honeycomb appearance within the gallbladder. Gallbladder fissure is not an anatomic term.

216. A. Jaundice.

Jaundice is the most common indication for pediatric gallbladder and biliary tree imaging. Most common causes of pediatric cholestasis and jaundice include biliary atresia, neonatal hepatitis syndrome, and choledochal cyst. These can commonly be identified on ultrasound. Abdominal pain, nausea and vomiting, and a family history of gallstones are other reasons for performing gallbladder ultrasound.

217. B. Middle hepatic vein.

The middle hepatic vein and the gallbladder fossa course along the same plane. Locating the middle hepatic vein can help identify the gallbladder fossa. The middle hepatic vein also lies within the interlobar fissure and on ultrasound visually divides the liver into right and left lobes. The right hepatic vein lies within the right hepatic fissure. The left hepatic vein is always located anterior to the left portal vein, which courses away from the gallbladder fossa.

218. C. Choledochal cyst.

The congenital abnormality consisting of a dilated common bile duct associated with biliary obstruction is known as a choledochal cyst (arrow). One theory of causation is that cyst formation occurs when cholangitis weakens the bile duct wall. There are multiple classifications of choledochal cysts based on their location and severity. The most common clinical sign is jaundice, but abdominal mass and pain can occur. More than half of the diagnoses of choledochal cysts will occur before age 10. If the cyst becomes large enough, duodenal obstruction can occur. Other complications include ascending cholangitis, stone formation, pancreatitis, biliary cirrhosis, and abscess. On ultrasound a well-defined cystic structure can be seen in the porta hepatis separate from the gallbladder but continuous with the extrahepatic bile ducts. Intrahepatic biliary duct dilatation visualized in this image can be seen in half of the cases. Choledocholithiasis is a stone within a biliary duct. A hydropic gallbladder would not be continuous with the common bile duct. A fluid-filled duodenum would be located inferior and medial to the gallbladder.

219. A. Cholestasis.

Cholestasis is the primary cause of acalculous cholecystitis. Over a prolonged period of time, the bile thickens and leads to obstruction of the cystic duct. Bacteria within the gallbladder can cause inflammation of the mucosa and wall. Clinical symptoms are fever, right upper quadrant (RUQ) pain, and vomiting. The sonographic appearance is the same as that of acute cholecystitis, but without gallstones (acalculous). Acalculous cholecystitis is an uncommon condition associated with burn victims, recent surgery, sepsis, and debilitating conditions. Trauma of the gallbladder usually results in contusion, laceration, or perforation. Cholangitis is an infection of the bile ducts.

220. B. Supine and left lateral decubitus.

The most common scanning positions for gallbladder imaging are supine and left lateral decubitus. Rolling a patient onto the left side will demonstrate the mobility of gallstones or sludge. The left posterior oblique position may also be used. It is important to image in two positions in case there are gallstones located too inferior to be seen in the supine position. Longitudinal and transverse views of all gallbladder segments should be obtained. Patients should be held NPO to better visualize the distended gallbladder and its contents. For larger patients a low-frequency transducer may be necessary to allow for greater beam penetration to the region of interest.

221. D. Bilirubin.

Bilirubin is the end product of the metabolic breakdown of hemoglobin. It is the substance produced by the breakdown of old red blood cells within the liver. Bilirubin is excreted in stool and gives feces color. Increased levels of bilirubin cause jaundice. Unconjugated or indirect bilirubin is carried to the
Pediatric Sonography Review

Test yourself before the ARDMS tests you! Written by expert clinicians, edited by nationally renowned physician-sonologists, and peer reviewed by 12 well-recognized authorities, this review covers all of the clinical tasks and topics on the ARDMS Pediatric Sonography (PS) specialty exam. It features 623 registry-like questions together with answers, clear explanations, and authoritative references for further study. More than 250 diagnostic images, schematics, and illustrations prepare you to tackle the images, anatomy, and pathology on the exam. Why are the Davies mock exams so popular and effective? Because they offer the same kinds of thought-provoking questions you will find on the exam! SDMS-approved for 12 hours of continuing medical education credit. Davies catalog #11074.

About the authors . . .

Julie Plaugher, RDMS (AB)(OB/GYN)(PS), is the Ultrasound Clinical Educator of Radiology Ultrasound at Arnold Palmer Hospital for Children and Winnie Palmer Hospital for Women and Babies in Orlando, Florida. She attended the Medical College of Georgia’s sonography program in 1988 and has been practicing ultrasonography for 30 years. In addition to her three ARDMS credentials, she holds certifications in Nuchal Translucency, Nasal Bone, and Cervical Length Education and Review (CLEAR).

Marielis Marrero Maldonado, RDMS (AB)(OB/GYN)(PS), is a lead ultrasound technologist at Arnold Palmer Hospital for Children and Winnie Palmer Hospital for Women and Babies. She earned her health sciences degree from Universidad del Este in Puerto Rico, specializing in general sonography, vascular technology, and echocardiography, and has taught ultrasound at both her alma mater and Atenas College.

Lennard D. Greenbaum, MD, has been a nationally recognized clinical ultrasonologist for over 40 years. Since the 1970s he has been active in the development of sonography as a recognized profession, serving on the boards of directors of both the Joint Review Committee on Education in Diagnostic Medical Sonography (JRC DMS) and the American Registry for Diagnostic Medical Sonography (ARDMS), for which he was an early question writer and oral examiner. He is a Fellow of the American College of Radiology (ACR), the American Institute of Ultrasound in Medicine (AIUM), and the Society of Radiologists in Ultrasound (SRU); is past president of the AIUM; has served three terms on the ACR’s Commission on Ultrasound; and is a co-founder of the International Contrast Ultrasound Society (ICUS).

John Blake Campbell, MD, is emeritus Director of Pediatric Radiology in the Department of Radiology at Arnold Palmer Hospital for Children in Orlando, Florida. He has been a practicing pediatric radiologist for over 30 years, first as Chairman of Radiology at the Denver Children’s Hospital, from which he was recruited to the new Arnold Palmer Hospital in 1981. He has served as an examiner for the American Board of Radiology, visiting professor at 38 institutions, lecturer at numerous postgraduate institutions and professional societies both in the United States and abroad, and author of scores of peer-reviewed articles on ultrasound in pediatric imaging.

Also available: The Newest Interactive Mock Exams from Davies
in both CD-ROM and Downloadable formats—including the Pediatric Sonography version at the right. Order toll-free at 1-877-792-0005 or www.daviespublishing.com.