Sonography Scanning
PRINCIPLES AND PROTOCOLS
It is an honor that I was once again asked to revise a textbook loved and used by many students, teachers, and sonographers. I have been a sonographer since 1976, and it is my hope that some of the tips and tricks I have learned over the years will help students and anyone reading this book be better sonographers. I wanted to add some new sections, including liver elastography, neonatal hips and spine, and neck mapping. Unfortunately, that meant some material had to be cut to make room for the new material. It was not an easy decision, but I decided to eliminate the echocardiography section. The main reason I decided to not include these chapters is that the field of echocardiography has exploded with new technologies, and I felt it would not be fair to the reader to have a basic chapter, nor would it give the echocardiography profession the justice it deserves. I also agreed with Shannon to combine the obstetrics chapter with the obstetric transvaginal scanning chapter, because very rarely would just a transvaginal examination be ordered for a pregnancy, but it would be performed at the time of the transabdominal study to clarify findings.

One of the most frustrating things for a student is understanding why it appears that every sonographer scans a patient differently, giving the impression that they are following different protocols. In addition, there is the conflict between the protocol they learn in school and the one the sonographer follows in the clinical rotations. It is my hope that by reading this book the student understands that all studies have a basic protocol as defined by the ultrasound societies and accrediting organizations, which allows the department to add additional images that it may require for the practice. Some sonographers may prefer to start with transverse images, whereas others prefer to begin with longitudinal images, which can add to the confusion. The bottom line is that sonographers document the required images by the end of the study. Sonography is unique in that it allows some freedom in image order and expansion of the protocol as needed when pathologic findings are present. As sonographers, we develop our own style of scanning over the years.

Sonography is the most operator-dependent modality, and the skills and knowledge of the sonographer will determine the quality and findings of the sonographic images. As sonographers, we constantly use our critical thinking skills to optimize images and determine which images to document to provide a complete study to radiologists or sonologists, so they can determine if the study is normal or if a pathologic condition is present. Sonographers must know what a normal organ or Doppler signal looks like so they can determine if what they are seeing is abnormal. A sonographer needs
a good understanding of sonographic principles and instrumentation to obtain high-quality images. The ultrasound unit can only do so much for the image, and the sonographer must take the image to the next level by adjusting the proper controls and choosing the correct transducer type and frequency.

All of the chapters follow a similar structure and are divided into three sections. The chapter begins by starting with a review of anatomy and physiology, followed by the sonographic appearance of the organ and any normal variants. The next section deals with scanning the organ: discussing patient prep, appropriate transducers, and the right patient position or positions to use while scanning. Rounding out this section are discussion of breathing techniques needed and technical tips for a successful study. The final section is the protocol for the study. All protocols were current at the time of writing the book and are based on the American Institute of Ultrasound in Medicine (AIUM) practice parameters and the Intersocietal Accreditation Commission Vascular Testing (IAC-VT) standards. The AIUM protocols were not created solely by the AIUM but have been created and approved jointly by the major ultrasound, radiology and other medical organizations that use ultrasound in their daily practice. This makes following a protocol much easier than deciding whether to follow the AIUM or ACR protocol, for example. The IAC-VT standards are only for vascular examinations and are very similar if not identical to the AIUM guidelines.

What’s New

This edition has been updated to reflect current required minimum images for sonographic examinations based on the AIUM guidelines and IAC-VT standards at the time of publication. There are all new images to illustrate the images required for protocols and some examples of common pathologic conditions that might be found incidentally. With the increase of information and images, the review questions have been moved online. In addition, you will notice that the survey information has been removed. With current constraints on the amount of time to complete a sonogram, sonographers do not have the time to perform a whole protocol before they start documenting images. Many sonographers start the examination and see what unfolds as they are scanning. Some sonographers may do a quick survey before starting the documentation process by maybe scanning the organ in one plane, usually transverse. It does not make you a poorer sonographer if you do not do a survey scan before you start the examination. To be honest, I never did a pre-scan survey. If the purpose of the sonogram is to verify or clarify findings from another imaging study, I would pay special attention to the area in
question when I examined that area. Usually at the end of the study I would document a few images using a split screen technique and obtain longitudinal and transverse images of any mass or pathologic finding with measurements. I would also add any images at the end as needed to document areas of pain or concern, again in longitudinal and transverse planes, that were not evaluated with the normal protocol images.

It is my hope as you journey along your road to becoming a great sonographer that this book will help you in your travels.

M. Robert De Jong, RDMS, RDCS, RVT, FAIUM, FSDMS
PART I GENERAL PRINCIPLES

1 Understanding Protocols and How They Are Determined, 1
 M. Robert Defong
 Who and What Determines a Protocol, 1
 Ultrasound Organizations, 2
 Accrediting Organizations, 2
 Coding, 3
 How Congenital Anomalies and Pathology Influence
 the Protocol, 3
 Nonimage Aspects of Protocols, 4
 Protocol: Patient Positions and Scanning Planes, 4
 Protocols: Documentation, 5
 The Sonographer and the Patient, 5
 Clinical Safety for the Patient and the Sonographer, 7
 The Importance of Ergonomics, 8
 Scanning Tips, 9
 Image Documentation, 10
 Scanning Tips, 10
 Presenting an Examination to the Sonologist, 11
 Describing Sonographic Findings, 11

2 Scanning Planes and Scanning Methods, 13
 M. Robert Defong
 Labeling the Image, 13
 Anatomic Planes, 14
 Scanning Planes Overview, 14
 Ultrasound Scanning Planes, 15
 Sagittal, 15
 Transverse, 15
 Coronal Scanning Plane, 17
 Scanning, 18
 Transducers, 18
 Scanning Techniques, 20
 How to Take Accurate Measurements, 21

PART II PATHOLOGY

3 Scanning Protocol for Abnormal Findings and Pathologic
 Conditions, 25
 M. Robert Defong
 Evaluating Abnormal Findings or Pathologic
 Conditions, 25
 Proper Communication of the Results of the
 Examination, 25
 Sonographic Terminology, 26
 Documenting Abnormal Findings and Pathologic
 Conditions, 29
 Helpful Artifacts, 33
Describing the Sonographic Appearance of Abnormal Findings and Pathologic Conditions, 34
Describing Pathologic Areas, 37
Scanning Tips, 39

PART III ABDOMINAL SCANNING PROTOCOLS

4 Abdominal Aorta Scanning Protocol, 41
M. Robert Defong
Overview, 42
Aorta Anatomy, 42
Sonographic Appearance, 44
Ultrasound of the Aorta, 45
Patient Prep, 45
Transducer, 45
Breathing Technique, 45
Patient Position, 46
Technical Tips, 46
Required Images, 47
Abdominal Aorta Protocol, 47
Aorta • Longitudinal Images, 47
Aorta • Transverse Images, 51
Color Doppler, 55
How to Measure the Aorta, 55
Screening Protocol to Rule Out an Abdominal Aortic Aneurysm, 58
American Institute of Ultrasound in Medicine, American College of Radiology, and Society of Radiologists in Ultrasound (AIUM/ACR/SRU) Protocol, 58
Intersocietal Accreditation Commission (IAC) Vascular Testing’s Protocol, 58
Finding an Unexpected Abdominal Aortic Aneurysm, 59

5 Inferior Vena Cava Scanning Protocol, 61
M. Robert Defong
Overview, 62
Anatomy and Function, 62
Sonographic Appearance, 63
Ultrasound of the Inferior Vena Cava, 64
Patient Prep, 64
Transducer, 64
Breathing Technique, 64
Patient Position, 64
Required Images, 64
Inferior Vena Cava • Longitudinal Images, 65
Inferior Vena Cava • Transverse Images, 67
Required Images When the Inferior Vena Cava Is Part of Another Study, 69

6 Liver Scanning Protocol, 71
M. Robert Defong
Overview, 72
Anatomy, 72
Physiology, 81
Sonographic Appearance, 81
Ultrasound of the Liver, 84
Patient Prep, 84
Transducer, 84
Breathing Technique, 85
Patient Position, 85
Technical Tips, 86
Liver Required Images, 86
Liver • Longitudinal and Sagittal Images, 86
Liver • Transverse Images, 91
Elastography of the Liver, 96
Performing a Liver Elastography Examination, 97

7 Gallbladder and Biliary Tract Scanning Protocol, 101
M. Robert Defong
Overview, 101
Anatomy, 102
Physiology, 103
Sonographic Appearance, 106
Ultrasound of the Gallbladder and Biliary Tree, 107
Patient Prep, 107
Transducer, 108
Breathing Technique, 108
Patient Position, 108
Technical Tips, 110
Importance of Verifying When and What the Patient Last Ate, 110
Mickey Mouse Sign, 110
How to Properly Measure the Gallbladder Wall, 110
Intrahepatic Duct Dilatation, 112
Murphy’s Sign, 112
Artifacts That Can Lead to a Misdiagnosis, 114
Common Bile Duct Tips, 116
Gallbladder and Biliary Tract Required Images, 117
Gallbladder and Biliary Tract • Longitudinal Images, 118
Gallbladder and Biliary Tract • Transverse Images, 120
Gallbladder and Biliary Tract • Longitudinal Images With Patient in LLD or RSU, 123
Gallbladder and Biliary Tract • Transverse Images With Patient in LLD or RSU, 124

8 Pancreas Scanning Protocol, 127
M. Robert Defong
Overview, 127
Anatomy, 127
Physiology, 130
Sonographic Appearance, 131
Pancreas Relationships to Other Organs and Blood Vessels, 134
Ultrasound of the Pancreas, 134
Patient Prep, 135
Transducer, 136
Breathing Technique, 136
Patient Position, 136
Pancreas Required Images, 136
 Pancreas • Long Axis Views From a Transverse Oblique Plane, 136
 Pancreas • Transverse Views From a Sagittal Plane, 138

9 Renal Scanning Protocol, 141
 M. Robert De Jong
 Overview, 141
 Anatomy, 142
 Physiology, 148
 Sonographic Appearance, 148
 Normal Variants, 150
 Renal Anomalies, 158
 Ultrasound of the Kidneys, 162
 Patient Prep, 162
 Transducer, 162
 Breathing Technique, 162
 Patient Position, 163
 Technical Tips, 163
 Renal Required Images, 164
 When to Include Bladder Images, 165
 When to Include Doppler Images, 167
 Right Kidney • Longitudinal Images, 172
 Right Kidney • Transverse Images, 174
 Left Kidney • Longitudinal Images, 175
 Left Kidney • Transverse Images, 177
 Required Images When the Kidneys May Need To Be Evaluated From Other Protocols, 179

10 Spleen Scanning Protocol, 183
 M. Robert De Jong
 Overview, 183
 Anatomy, 183
 Physiology, 186
 Sonographic Appearance, 186
 Normal Variants, 188
 Ultrasound of the Spleen, 188
 Patient Prep, 188
 Transducer, 188
 Breathing Technique, 188
 Patient Position, 190
 Technical Tips, 190
 Spleen Required Images, 190
 Spleen • Longitudinal Images, 191
 Spleen • Transverse Images, 192
 Required Images When the Spleen Is Part of Another Study, 194

11 Image Protocols for Full and Limited Studies of the Abdomen, 195
 M. Robert De Jong
 Overview, 195
 Ultrasound of the Abdomen: Complete and Limited, 196
 Patient Prep, 196
 Transducer, 197
 Breathing Technique, 197
 Patient Position, 197
 Technical Tips, 197
PART IV PELVIC SCANNING PROTOCOLS

12 Female Pelvis Scanning Protocol, 223
Tricia Turner
Overview, 223
Anatomy, 224
Physiology, 232
Sonographic Appearance, 233
Ultrasound of the Female Pelvis, 237
Patient Prep, 237
Transducer, 237
Breathing Technique, 237
Patient Position, 237
Technical Tips, 237
Doppler, 241
Female Pelvic Required Images, 243
Uterus • Longitudinal Images, 243
Uterus • Transverse Images, 245
Ovary • Longitudinal Images, 247
Ovary • Transverse Images, 247

13 Transvaginal Sonography, 249
Tricia Turner
Overview, 249
Anatomy and Physiology, 250
Sonographic Appearance, 250
Transvaginal Ultrasound, 252
Patient Prep, 252
Transducer, 254
Patient Position, 254
Image Orientation, 254
Patient Position, 256
Breathing Technique, 256
Technical Tips, 256
Transvaginal Required Images, 261
Uterus • Longitudinal Images, 261
Uterus • Coronal Images, 264
Ovary • Longitudinal Images, 266
Ovary • Coronal Images, 267

14 Obstetric Scanning Protocol for First, Second, and Third Trimesters, 269
Shannon Trebes
Overview, 270
Maternal Anatomy and Physiology, 270
Anatomy and Sonographic Appearance During the First Trimester, 271
Sonographic Appearance and Development During the First Half of the First Trimester, 273
Estimating Gestational Age During the First Half of the First Trimester, 274
Sonographic Appearance and Development During the Second Half of the
First Trimester, 276
End of the First Trimester, 277
Determining Gestational Age During the Second Half of the First Trimester, 277
Sonographic Appearance and Development During the Second (14 0/7 to 27
6/7 Weeks) and Third (28 to 40 Weeks) Trimesters, 278
Determining Gestational Age During the Second and Third Trimesters, 288

Obstetric Ultrasound, 289
Transducer, 289
Patient Prep, 289
Patient Position, 290
Endovaginal Examination, 290

Required Images for the First Trimester, 291
Transabdominal Approach, 291
Transvaginal Approach, 296
Nuchal Translucency, 297

Required Images for the Second and Third Trimesters, 297
Transabdominal Approach, 298
Evaluating the Fetal Spine, 319
External Genitalia in Multiple Gestations, 326

Required Images for Second and Third Trimester for High Risk, 326
Transabdominal Approach, 326
Multiple Gestations, 332

Additional Required Images, 332

The Biophysical Profile, 335
Required Documentation for a Biophysical Profile, 336

15 Male Pelvis Scanning Protocol for the Prostate Gland, Scrotum, and Penis, 339
M. Robert DeFong

Scrotum and Testicles Protocol, 340
Overview, 340
Anatomy, 340
Physiology, 345
Sonographic Appearance, 346

Ultrasound of the Scrotum and Testicles, 349
Patient Prep, 349
Transducer, 349
Patient Position, 349
Technical Tips, 350

Scrotal and Testicular Required Images, 352
Scrotum and Testes • Longitudinal Images, 356
Transverse Images, 360

Prostate Gland Protocols, 362
Overview, 362
Anatomy, 364
Physiology, 369
Sonographic Appearance, 369

Ultrasound of the Prostate: Transabdominal Approach, 372
Patient Prep, 372
Transducer, 372
Patient Position, 372
Technical Tips, 372

Transabdominal Prostate Required Images, 375
Transabdominal Prostate • Longitudinal Images, 375
Transabdominal Prostate • Transverse Images, 376
Transabdominal Prostate • Postvoid Images, 377
Ultrasound of the Prostate: Transrectal and Endorectal
 Approach, 377
 Patient Prep, 377
 Transducer, 377
 Patient Position, 379
 Technical Tips, 379
 Transducer Disinfection, 384
Transrectal Prostate Required Images, 387
 Transrectal Prostate • Transverse Images, 387
 Transrectal Prostate • Longitudinal Images, 390
Penis, 392
Overview, 392
 Anatomy, 393
 Physiology, 400
 Sonographic Appearance, 403
Ultrasound of the Penis, 404
 Patient Prep, 404
 Transducer, 404
 Patient Position, 404
 Technical Tips, 405
 Penile Doppler Required Images, 409
 Preinjection Images, 411
 Postinjection Images, 414

PART V SMALL PARTS SCANNING PROTOCOLS

16 Thyroid Scanning Protocol, 421
 M. Robert Defong
 Overview, 421
 Anatomy, 422
 Physiology, 424
 Sonographic Appearance, 426
 Sonographic Appearance of Common Pathology, 426
Ultrasound of the Thyroid, 430
 Patient Prep, 430
 Transducer, 430
 Patient Position, 431
 Breathing Technique, 432
 Technical Tips, 432
 Neck Nodes and Mapping, 433
Thyroid Required Images, 437
 Thyroid • Transverse Images, 438
 Thyroid • Longitudinal Images, 440

17 Breast Scanning Protocol, 443
 Tricia Turner
 Overview, 443
 Anatomy, 444
 Physiology, 444
 Sonographic Appearance, 445
Ultrasound of the Breast, 447
 Patient Prep, 447
 Transducer, 447
 Breathing Technique, 447
 Patient Position, 447
 Technical Tips, 448
Breast Required Images, 454
Breast Lesion Required Images, 458

18 Neonatal Brain, Spine, and Hip Scanning Protocols, 461
 Ashley Upton; Ted Whitten
 Ultrasound of the Neonate, 462
 Neonatal Brain Overview, 463
 Intracranial Anatomy and Sonographic Appearance, 463
 Ultrasound of the Neonatal Brain, 466
 Required Images, 468
 Additional Images, 475
 Neonatal and Infant Spine Overview, 476
 Spinal Anatomy and Sonographic Appearance, 476
 Ultrasound of the Neonatal and Infant Spine, 477
 Required Images, 479
 Infant Hip Overview, 481
 Anatomy of the Infant Hip, 482
 Hip Maneuvers, 483
 Ultrasound of the Infant Hip, 484
 Required Images, 485

19 Musculoskeletal Scanning Protocol for Rotator Cuff, Carpal Tunnel, and Achilles Tendon, 491
 Ted Whitten
 Overview, 491
 Ultrasound of the Shoulder, 492
 Anatomy, 494
 Physiology, 497
 Sonographic Appearance, 498
 Ultrasound of the Shoulder, 501
 Patient Prep, 501
 Transducer, 501
 Breathing Technique, 502
 Patient Position, 502
 Technical Tips, 503
 Shoulder Required Images, 504
 Ultrasound of the Carpal Tunnel, 512
 Anatomy, 513
 Physiology, 514
 Sonographic Appearance, 515
 Ultrasound of the Carpal Tunnel, 515
 Patient Prep, 515
 Transducer, 515
 Breathing Technique, 515
 Patient Position, 516
 Technical Tips, 516
 Carpal Tunnel Required Images, 517
 Carpal Tunnel • Transverse Images, 517
Ultrasound of the Achilles Tendon, 519
 Anatomy, 522
 Physiology, 523
 Sonographic Appearance, 523
Ultrasound of the Achilles Tendon, 524
 Patient Prep, 524
 Transducer, 524
 Breathing Technique, 524
 Patient Position, 524
 Technical Tips, 524
Achilles Tendon Required Images, 525
 Achilles Tendon • Longitudinal Images, 525
 Achilles Tendon • Transverse Images, 527
 Achilles Tendon • Pathology Examples, 529

PART VI VASCULAR SCANNING PROTOCOLS

20 Abdominal Doppler and Doppler Techniques, 531
 M. Robert Defong
 Overview, 531
 Abdominal Doppler, 533
 Diagnostic Criteria, 535
 Doppler Techniques and Tips, 541
 Doppler Study of the Kidneys, 549
 Patient Prep, 550
 Transducer, 550
 Breathing Technique, 551
 Patient Position, 551
 Technical Tips, 551
 Kidney Required Images, 567
 Kidney • Longitudinal Images, 567
 Kidney • Doppler Images, 568
 Liver Required Doppler Images, 577
 Patient Prep, 578
 Transducer, 578
 Breathing Technique, 578
 Patient Position, 578
 Technical Tips, 579
 Liver Required Images, 593
 Liver • Longitudinal and Transverse Images, 593
 Liver • Doppler Images, 593

21 Cerebrovascular Duplex Scanning Protocol, 601
 Aubrey J. Rybyinski
 Overview, 601
 Anatomy, 602
 Physiology, 604
 Sonographic Appearance, 605
 Patient Prep, 609
 Transducers, 609
 Patient Position, 609
 Technical Tips, 611
 Diagnostic Criteria, 619
Carotid Required Images, 623
Carotid • Longitudinal Images, 626

22 Peripheral Arterial and Venous Duplex Scanning Protocols, 635
Aubrey J. Rybyinski
Overview, 636
Peripheral Arterial Overview, 636
Anatomy, 637
Physiology, 638
Sonographic Appearance, 639
Arterial Duplex, 639
Patient Prep, 639
Transducers, 640
Breathing Technique, 640
Patient Position, 640
Ankle-Brachial Index, 641
Puncture Complications, 642
Doppler Waveforms, 643
Lower Extremity Arterial Velocities, 646
Examples of Arterial Disease, 646
Technical Tips, 650
Lower Arterial Evaluation Required Images, 652
Venous Duplex of the Lower Extremity, 659
Anatomy, 661
Sonographic Appearance, 663
Venous Duplex of the Lower Extremity, 666
Patient Prep, 666
Transducer, 666
Patient Position, 666
Technical Tips, 667
Scanning Tips and Tricks, 672
Examples of Venous Disease, 675
Acute vs Chronic DVT, 677
Lower Extremity Venous Duplex Required Images, 679

APPENDIXES

A Infection Prevention, 689
B Top 10 Tips for the Sonographer, 693
C Documentation of an Ultrasound Examination, 697
D Guidelines for Performance of the Abdominal and Retroperitoneal Ultrasound Examination, 699
E Guidelines for Performance of the Scrotal Ultrasound Examination, 703
F Guidelines for Performance of the Female Pelvis Ultrasound Examination, 705
G Guidelines for Performance of the Antepartum Obstetric Ultrasound Examination, 709
H Guidelines for the Performance of Lower Extremity Venous Doppler Examinations, 713

ABBREVIATION GLOSSARY, 717
INDEX, 719
Understanding Protocols and How They Are Determined

M. Robert Defong

Key Words
Accreditation
As Low As Reasonably Achievable (ALARA)
Case presentation
Congenital anomaly
Decubitus
Electronic Medical Record (EMR)
Ergonomics

Health Insurance Portability And Accountability Act (HIPAA)
Identification (ID) bracelet
Pathologic condition
Personal Protection Equipment (PPE)
Protocol
Scope of practice
Sonographer
Sonologist

Objectives
At the end of this chapter, the reader will be able to:

• List the organizations that determine which images are needed for a protocol
• Discuss the difference between a complete and limited Current Procedural Terminology (CPT) code
• Discuss how congenital anomalies and pathologic conditions can influence the final protocol
• Define ultrasound terms used to describe the ultrasound appearance of structures

Who and What Determines a Protocol

Protocols can be very frustrating to a student or a new employee. What exactly is a protocol? In ultrasound a protocol determines the images needed to ensure that a diagnosis can be made or verify that an organ is normal. The sonographer, using sound waves to create images of the body, is responsible for obtaining the images of a protocol. Although protocols may differ among laboratories, all have a core of similarity. For example, hospital A may require the right kidney to be fully imaged in a right upper quadrant (RUQ) examination, whereas hospital B may require only a long-axis image of the right kidney with a measurement. What is the reason for these differences? Shouldn’t protocols be uniform across the country?
Ultrasound Organizations
The good news is that our national ultrasound organizations and those medical organizations that use ultrasound, such as The American College of Obstetricians and Gynecologists (ACOG), are working with the ultrasound accreditation organizations that evaluate the ultrasound practice for the quality of their studies, reports, and policies to help standardize ultrasound protocols. These organizations include the American Institute of Ultrasound in Medicine (AIUM), Society of Radiologists in Ultrasound (SRU), American College of Radiology (ACR), Society of Pediatric Radiologists (SPR), the Society for Maternal-Fetal Medicine (SMFM), Society of Interventional Radiology (SIR), and ACOG. For protocols in which the sonographic examination may be performed by different specialties, the organization associated with that protocol was invited for collaboration. For example, for any urology-related protocols, the American Urologic Association (AUA) had input because some urologists perform ultrasound examinations in their office.

Accrediting Organizations
The common denominator of protocols is the requirements of the accreditation organizations, because their standards will require a minimum set of images to be accredited by that organization. Accreditation is required for reimbursement by some insurance companies. A department may add additional images or views to the protocol, but they may not delete required images. Accrediting organizations include the AIUM, ACR, and Intersocietal Accreditation Commission–Vascular Testing (IAC-VT). The ACR and IAC-VT provide accreditation for laboratories or departments that perform vascular examinations, and the AIUM for departments that perform ultrasound examinations that are not vascular. The AIUM has vascular protocols on their web site but they do not offer vascular accreditation through AIUM accreditation. Working with IAC, they provide accreditation for all aspects of ultrasound accreditation. The ACR accredits both vascular and nonvascular examinations, and most radiology ultrasound departments prefer ACR accreditation, as they offer accreditation for all the imaging modalities in a radiology department. Most vascular laboratories receive their accreditation through IAC-VT, and nonimaging departments that perform their own ultrasound examinations, such as urology and endocrine departments, achieve accreditation through the AIUM. Protocols and accreditation standards should be checked annually and can be found on each of the organization’s web site.
Coding

Another aspect that influences protocols is the billing codes that are sent to the insurance companies, called the Current Procedural Terminology codes, or, more commonly, CPT codes. The main purpose of the CPT code is to define what constitutes a complete versus a limited ultrasound examination. The internal code used by the ultrasound department, such as US123, which is used to order a renal ultrasound, is mapped to CPT code 76775. The 76775 code, not the US123 code, is sent to the insurance company for billing. The CPT code 76775 is used to bill an “ultrasound, retroperitoneal (e.g., renal, aorta, nodes), real time, with image documentation, limited.” The CPT book defines which images are needed to legally bill for a complete study. A complete retroperitoneal study, 76770, is defined as follows: a complete ultrasound examination of the retroperitoneum consists of real-time scans of the kidneys, abdominal aorta, common iliac artery origins, and inferior vena cava, including any demonstrated retroperitoneal abnormality. Alternatively, if clinical history suggests a urinary tract pathologic condition, complete evaluation of the kidneys and urinary bladder also comprises a complete retroperitoneal ultrasound. This means that if your department bills 76770 for a renal ultrasound and the bladder is not imaged or mentioned in the final report, the insurance company will reject the bill, since the CPT code submitted was by definition a complete study and a limited study was performed. Once rejected, the department may not be able to bill again for the study. If a practice is caught billing for complete studies when only performing limited studies, they are heavily fined. The structures that need to be imaged to constitute a complete study are found in the CPT book and should be checked with each new edition to update protocols as needed.

FUTURE OF IMAGE STORAGE: As technology evolves, our protocols evolve also. Some laboratories now include video clips of the anatomy along with still images, whereas other laboratories take only video clips. With volume imaging, some laboratories acquire volumes of data and “slice and dice” the data like computed tomography (CT) and magnetic resonance imaging (MRI). There will be new ways to document and store the images as the industry evolves.

How Congenital Anomalies and Pathology Influence the Protocol

The sonographer must be knowledgeable and aware of congenital anomalies, because these will require adjusting the protocol. A
congenital anomaly is defined as something that is unusual or different at birth, such as a choledochal cyst or ectopic kidney. If a sonographer discovers a kidney is not in its correct location, this cannot be ignored, but rather the protocol should be expanded into the pelvic region to locate the missing kidney. If the kidney in the normal position is normal in size, there is a second kidney somewhere in the body, as a solitary kidney would be increased in size.

The protocol will be expanded when a pathologic condition is found. An example would be in the finding of unsuspected liver metastases; in this case the protocol should be expanded to try to determine the primary tumor and look for abdominal lymph nodes. Another example is when ascites is discovered on a RUQ ultrasound examination. Once ascites is discovered, the full extent of the fluid should be documented, which will entail scanning the flanks, the pelvic area, and the left upper quadrant (LUQ). Sometimes an obvious cause for the patient’s symptoms is not diagnosed, and the sonographer needs to keep looking. For example, if a patient presents with bilateral leg swelling, yet no deep vein thrombosis (DVT) is found in the leg veins, the sonographer should expand the protocol to image the inferior vena cava to look for a central clot.

Nonimage Aspects of Protocols

Protocols do not just tell the sonographer what images are needed but also inform the sonographer about patient positions, transducer types and frequencies, required patient preps, and other information. In addition, protocols may tell the sonographer how to alter the protocol when congenital anomalies or pathologic conditions are present and what images are needed for short-term follow-up examinations.

Protocol: Patient Positions and Scanning Planes

Protocols will describe the best patient position to obtain the needed images and any specific patient positions required. For example, a protocol for the gallbladder will have the patient start in a supine position and require, depending on the patient’s condition, turning the patient into a left lateral decubitus position, also called a right side up (RSU) position. A decubitus position is when the patient lies on their side, with the side that is on the table, or down, stated before the word “decubitus.” Other patient positions include prone, oblique, and erect views. Various patient positions are illustrated in Fig. 1.1.

All protocols will require images obtained in at least two planes, usually the longitudinal and transverse planes. Other imaging planes may include oblique, coronal, sagittal, and the long axis of the organ.
Fig. 1.1 Standard Patient Positions. Different patient positions are used during an ultrasound examination depending on the area of interest being evaluated. The best patient position is determined by what will produce the optimal view. It is standard practice to use different patient positions during a study to evaluate various structures. Note that any change in patient position must be noted on the images as part of standard labeling.

Protocols: Documentation

As technology grows and the cost of storing images on a server is decreasing, documentation of ultrasound studies is changing. One limiting factor is the size of video clips that the picture archiving and communication system (PACS) can play, although this is no longer an issue with modern PACS. The number of images required for documentation may change between ultrasound departments. This is especially true with the increasing number of departments integrating video clips into their protocols. The sonographer may obtain these video clips while assessing the anatomy to determine whether the organs seen are normal or affected by a pathologic condition. Using a scanning protocol is essential for methodical and organized documentation and for future comparable studies. Follow a scanning protocol as you would follow steps in a recipe.

The Sonographer and the Patient

- Dress according to the department’s guidelines. Many institutions are adopting department color-coded uniforms or scrubs so the area the employee works in can be easily identified. For example, diagnostic imaging personnel, no matter what department they work for, may wear blue uniforms, and nurses may wear green uniforms. Make sure you know the guidelines for, wearing jewelry, visible body piercings, and tattoos. If you are allowed to wear street clothes, make sure you know what is acceptable and what is not
acceptable to wear. Gel and body fluids can stain your clothes (I cannot begin to count my gel-stained ties), so make sure these are clothes that can be washed; stain-removal laundry products can help with gel stains. Consider investing in a few laboratory coats if you are allowed to wear them. Remember that your identification badge is part of your uniform and should be worn at all times while on the job and displayed so your name can be easily seen. You are a representative of the place where you work, so dress accordingly.

- Introduce yourself to your patient as soon as possible, which may be when you go to the waiting area to escort them back to the scanning room.

- Make sure you have the correct patient by checking the inpatient identification (ID) bracelet; some hospitals and outpatient centers are also placing them on outpatients. The typical ID bracelet displays the patient's full name, date of birth, and hospital identification or medical record number. If the patient does not have an ID bracelet, identify the patient as required by your place of employment. Some departments will not let you scan an inpatient who is missing their ID bracelet until one is placed on the patient. Although usually on the patient’s wrist, they may be found in other places on the patient’s body, such as their ankle.

- Briefly explain the examination to the patient in layman’s terms. For example, tell the patient that he or she will need to roll on the left side when instructed, as opposed to needing to roll into a decubitus position. Be sure to ask if the patient has any questions or concerns before beginning the examination. Make sure that you speak clearly and at a slow pace.

- When indicated, obtain a brief medical history from either the patient or the patient’s EMR and obtain any needed lab values and operative or other imaging reports. The EMR replaces the patient’s physical chart and contains information on the patient such as physical findings, vital signs, operative notes, laboratory values, imaging reports, and physician notes, among other information. Avoid using medical terms a patient may not understand when asking questions about history pertinent to the examination.

- Always be professional, courteous, and respectful to your patients, co-workers, and other staff.

- When in public areas, do not discuss patient information or tell patient stories. Be careful with what you put on social media about work and using social media as a place to complain, especially about a patient that you scanned. People have lost their jobs over improper social media content. As remote as it seems, your comments can be seen as a HIPAA violation. HIPAA is a U.S. law designed to provide privacy standards to protect patient medical records and other health-related and personal information that the patient or guardian provided to health plans, doctors, hospitals, and other health